Share Email Print
cover

Proceedings Paper

High-precision metal masking for multiple-wavelength laser diode fabrication using single-step-ion-implantation-induced quantum well intermixing
Author(s): Vincent Aimez; Jacques Beauvais; Jean Beerens; Boon Siew Ooi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper we report the development of a new and versatile ion implantation mask system which takes advantage of the high precision offered by recent deposition methods. A stack of alternate layers of two different materials which can be selectively etched is first deposited on the sample. Selective etching is then performed to remove a given number of layers from the stack in the various region of the sample. Owing to a high etching selectivity between the two materials, the thickness of the mask can be fixed very precisely in each region. During ion implantation, a different amount of ions will pass through the mask to reach the sample, according to mask thickness over each region. This method therefore provides a way to achieve a spatial control over the implantation dose, in a single implantation step. Thermal annealing can then be performed to induce quantum well intermixing in the underlying heterostructure, which brings about a blueshift of the emission wavelength. The results obtained with our method, which makes use of low energy ion implantation, for the fabrication ofsingle step graded blueshifting of InP/InGaAs/InGaAsP integrated laser heterostructures are presented. We also present a study of pairs of materials suitable for the mask fabrication, as well as the results of numerical simulations to determine the appropriate thickness ofthe mask layers.

Paper Details

Date Published: 15 December 2000
PDF: 9 pages
Proc. SPIE 4087, Applications of Photonic Technology 4, (15 December 2000); doi: 10.1117/12.406459
Show Author Affiliations
Vincent Aimez, Univ. de Sherbrooke (Canada)
Jacques Beauvais, Univ. de Sherbrooke (Canada)
Jean Beerens, Univ. de Sherbrooke (Canada)
Boon Siew Ooi, Nanyang Technological Univ. (Singapore)


Published in SPIE Proceedings Vol. 4087:
Applications of Photonic Technology 4
Roger A. Lessard; George A. Lampropoulos, Editor(s)

© SPIE. Terms of Use
Back to Top