Share Email Print
cover

Proceedings Paper

Electroabsorption transceiver (EAT): device concepts and system applications
Author(s): Andreas Stoehr; Robert Heinzelmann; Toshiaki Kuri; Ken-ichi Kitayama; Dieter Jaeger
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Recently, lightwave systems have attracted great interest not only for digital optical communication but also for the distribution of microwave and mm-wave signals in wireless applications. Future wireless communication networks are expected to offer broadband multimedia services to a large number of subscribers. As a consequence, the radio frequency is expected to be within the mm-wave band where a sufficient bandwidth for the large number of broadband channels is available. Since the electrical transmission of the mm-wave radio signals over long distances is not feasible, fiber-wireless systems have attracted great interest. They are considered to form the backbone of future broadband mm-wave wireless communication systems. Obviously, the successful implementation of mm-wave wireless communication networks in mass-market applications strongly depends on the costs of the infrastructure. In that respect, specially the cost of each single base station (BS) is a very critical factor since future wireless networks are expected to support a large number of remote BSs. Consequently, it is of great interest to reduce the base station complexity and cost. In this paper, we present a novel photonic transceiver component and discuss its application in mm-wave fiber-wireless systems. In detail, an InP-based 1 .55im waveguide electroabsorption transceiver (EATs) is presented that serves as a modulator and a photodetector simultaneously. Besides the basic device concept and its properties, the employment of high-speed EAT in 60GHz millimeter-wave (mm-wave) fiber-wireless applications is experimentally demonstrated. For the first time, full-duplex broadband (155.52Mbit/s) fiber-optic transmission in the 60GHz band has been achieved in a point-to-point link. Furthermore, a point-to-multipoint fiber-ring network architecture employing EAT is presented and in a first experiment full-duplex point-to-multipoint operation in the 60GHz band is experimentally demonstrated.

Paper Details

Date Published: 15 December 2000
PDF: 3 pages
Proc. SPIE 4087, Applications of Photonic Technology 4, (15 December 2000); doi: 10.1117/12.406417
Show Author Affiliations
Andreas Stoehr, Univ. Duisburg (Germany)
Robert Heinzelmann, Univ. Duisburg (Germany)
Toshiaki Kuri, Communications Research Lab. (Japan)
Ken-ichi Kitayama, Osaka Univ. (Japan)
Dieter Jaeger, Univ. Duisburg (Germany)


Published in SPIE Proceedings Vol. 4087:
Applications of Photonic Technology 4
Roger A. Lessard; George A. Lampropoulos, Editor(s)

© SPIE. Terms of Use
Back to Top