Share Email Print

Proceedings Paper

Local annealing of shape memory alloys using laser scanning and computer vision
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A complete set-up for local annealing of Shape Memory Alloys (SMA) is proposed. Such alloys, when plastically deformed at a given low temperature, have the ability to recover a previously memorized shape simply by heating up to a higher temperature. They find more and more applications in the fields of robotics and micro engineering. There is a tremendous advantage in using local annealing because this process can produce monolithic parts, which have different mechanical behavior at different location of the same body. Using this approach, it is possible to integrate all the functionality of a device within one piece of material. The set-up is based on a 2W-laser diode emitting at 805nm and a scanner head. The laser beam is coupled into an optical fiber of 60(mu) in diameter. The fiber output is focused on the SMA work-piece using a relay lens system with a 1:1 magnification, resulting in a spot diameter of 60(mu) . An imaging system is used to control the position of the laser spot on the sample. In order to displace the spot on the surface a tip/tilt laser scanner is used. The scanner is positioned in a pre-objective configuration and allows a scan field size of more than 10 x 10 mm2. A graphical user interface of the scan field allows the user to quickly set up marks and alter their placement and power density. This is achieved by computer controlling X and Y positions of the scanner as well as the laser diode power. A SMA micro-gripper with a surface area less than 1 mm2 and an opening of the jaws of 200(mu) has been realized using this set-up. It is electrically actuated and a controlled force of 16mN can be applied to hold and release small objects such as graded index micro-lenses at a cycle time of typically 1s.

Paper Details

Date Published: 6 November 2000
PDF: 4 pages
Proc. SPIE 4088, First International Symposium on Laser Precision Microfabrication, (6 November 2000); doi: 10.1117/12.405705
Show Author Affiliations
Moustapha Hafez, Swiss Federal Institute of Technology/Lausanne (United States)
Yves Bellouard, Swiss Federal Institute of Technology/Lausanne (United States)
Thomas C. Sidler, Swiss Federal Institute of Technology/Lausanne (Switzerland)
Reymond Clavel, Swiss Federal Institute of Technology/Lausanne (Switzerland)
Rene-Paul Salathe, Swiss Federal Institute of Technology/Lausanne (Switzerland)

Published in SPIE Proceedings Vol. 4088:
First International Symposium on Laser Precision Microfabrication
Isamu Miyamoto; Koji Sugioka; Thomas W. Sigmon, Editor(s)

© SPIE. Terms of Use
Back to Top