Share Email Print
cover

Proceedings Paper

Visual feature discrimination versus compression ratio for polygonal shape descriptors
Author(s): Joerg Heuer; Francesc Sanahuja; Andre Kaup
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In the last decade several methods for low level indexing of visual features appeared. Most often these were evaluated with respect to their discrimination power using measures like precision and recall. Accordingly, the targeted application was indexing of visual data within databases. During the standardization process of MPEG-7 the view on indexing of visual data changed, taking also communication aspects into account where coding efficiency is important. Even if the descriptors used for indexing are small compared to the size of images, it is recognized that there can be several descriptors linked to an image, characterizing different features and regions. Beside the importance of a small memory footprint for the transmission of the descriptor and the memory footprint in a database, eventually the search and filtering can be sped up by reducing the dimensionality of the descriptor if the metric of the matching can be adjusted. Based on a polygon shape descriptor presented for MPEG-7 this paper compares the discrimination power versus memory consumption of the descriptor. Different methods based on quantization are presented and their effect on the retrieval performance are measured. Finally an optimized computation of the descriptor is presented.

Paper Details

Date Published: 11 October 2000
PDF: 12 pages
Proc. SPIE 4210, Internet Multimedia Management Systems, (11 October 2000); doi: 10.1117/12.403834
Show Author Affiliations
Joerg Heuer, Siemens AG (Germany)
Francesc Sanahuja, Siemens AG (Germany)
Andre Kaup, Siemens AG (Germany)


Published in SPIE Proceedings Vol. 4210:
Internet Multimedia Management Systems
John R. Smith; Chinh Le; Sethuraman Panchanathan; C.-C. Jay Kuo, Editor(s)

© SPIE. Terms of Use
Back to Top