Share Email Print
cover

Proceedings Paper

MediaNet: a multimedia information network for knowledge representation
Author(s): Ana Belen Benitez; John R. Smith; Shih-Fu Chang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper, we present MediaNet, which is a knowledge representation framework that uses multimedia content for representing semantic and perceptual information. The main components of MediaNet include conceptual entities, which correspond to real world objects, and relationships among concepts. MediaNet allows the concepts and relationships to be defined or exemplified by multimedia content such as images, video, audio, graphics, and text. MediaNet models the traditional relationship types such as generalization and aggregation but adds additional functionality by modeling perceptual relationships based on feature similarity. For example, MediaNet allows a concept such as car to be defined as a type of a transportation vehicle, but which is further defined and illustrated through example images, videos and sounds of cars. In constructing the MediaNet framework, we have built on the basic principles of semiotics and semantic networks in addition to utilizing the audio-visual content description framework being developed as part of the MPEG-7 multimedia content description standard. By integrating both conceptual and perceptual representations of knowledge, MediaNet has potential to impact a broad range of applications that deal with multimedia content at the semantic and perceptual levels. In particular, we have found that MediaNet can improve the performance of multimedia retrieval applications by using query expansion, refinement and translation across multiple content modalities. In this paper, we report on experiments that use MediaNet in searching for images. We construct the MediaNet knowledge base using both WordNet and an image network built from multiple example images and extracted color and texture descriptors. Initial experimental results demonstrate improved retrieval effectiveness using MediaNet in a content-based retrieval system.

Paper Details

Date Published: 11 October 2000
PDF: 12 pages
Proc. SPIE 4210, Internet Multimedia Management Systems, (11 October 2000); doi: 10.1117/12.403791
Show Author Affiliations
Ana Belen Benitez, IBM Thomas J. Watson Research Ctr. (USA) and Columbia Univ. (United States)
John R. Smith, IBM Thomas J. Watson Research Ctr. (United States)
Shih-Fu Chang, Columbia Univ. (United States)


Published in SPIE Proceedings Vol. 4210:
Internet Multimedia Management Systems
John R. Smith; Chinh Le; Sethuraman Panchanathan; C.-C. Jay Kuo, Editor(s)

© SPIE. Terms of Use
Back to Top