Share Email Print
cover

Proceedings Paper

Decentralized commanding and supervision: the distributed projective virtual reality approach
Author(s): Juergen Rossmann
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

As part of the cooperation between the University of Souther California (USC) and the Institute of Robotics Research (IRF) of the University of Dortmund experiments regarding the control of robots over long distances by means of virtual reality based man machine interfaces have been successfully carried out. In this paper, the newly developed virtual reality system that is being used for the control of a multi-robot system for space applications as well as for the control and supervision of industrial robotics and automation applications is presented. The general aim of the development was to provide the framework for Projective Virtual Reality which allows users to project their actions in the virtual world into the real world primarily by means of robots but also by other means of automation. The framework is based on a new approach which builds on the task deduction capabilities of a newly developed virtual reality system and a task planning component. The advantage of this new approach is that robots which work at great distances from the control station can be controlled as easily and intuitively as robots that work right next to the control station. Robot control technology now provides the user in the virtual world with a prolonged arm into the physical environment, thus paving the way for a new quality of user-friendly man machine interfaces for automation applications. Lately, this work has been enhanced by a new structure that allows to distribute the virtual reality application over multiple computers. With this new step, it is now possible for multiple users to work together in the same virtual room, although they may physically be thousands of miles apart. They only need an Internet or ISDN connection to share this new experience. Last but not least, the distribution technology has been further developed to not just allow users to cooperate but to be able to run the virtual world on many synchronized PCs so that a panorama projection or even a cave can be run with 10 synchronized PCs instead of high-end workstations, thus cutting down the costs for such a visualization environment drastically and allowing for a new range of applications.

Paper Details

Date Published: 16 October 2000
PDF: 12 pages
Proc. SPIE 4196, Sensor Fusion and Decentralized Control in Robotic Systems III, (16 October 2000); doi: 10.1117/12.403723
Show Author Affiliations
Juergen Rossmann, Univ. Dortmund and Univ. of Southern California (Germany)


Published in SPIE Proceedings Vol. 4196:
Sensor Fusion and Decentralized Control in Robotic Systems III
Gerard T. McKee; Paul S. Schenker, Editor(s)

© SPIE. Terms of Use
Back to Top