Share Email Print
cover

Proceedings Paper

Combination of an autoassociative morphological memory and the kernel method
Author(s): Peter Sussner
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We recently introduced a class of highly nonlinear associative memories called morphological associative memories (MAMs). Notable features of autoassociative morphological memories (AMMs) include optimal absolute storage capacity and one-step convergence. The fixed points can be characterized exactly in terms of the original patterns. Unfortunately, AMM fixed points include a large number of spurious memories. In this paper, we use a combination of a basic AMM model and the kernel method in order to eliminate most of the spurious memories while leaving other AMM properties intact. Furthermore, our new AMM model is more tolerant to noise than a basic AMM model and less dependent on kernel selection than the original kernel method.

Paper Details

Date Published: 13 October 2000
PDF: 9 pages
Proc. SPIE 4120, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation III, (13 October 2000); doi: 10.1117/12.403618
Show Author Affiliations
Peter Sussner, State Univ. of Campinas (Brazil)


Published in SPIE Proceedings Vol. 4120:
Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation III
Bruno Bosacchi; David B. Fogel; James C. Bezdek, Editor(s)

© SPIE. Terms of Use
Back to Top