Share Email Print

Proceedings Paper

Deep cavity-shaped diaphragm for enhancement of microphone mechanical sensitivity
Author(s): Xinxin Li; Rongming Lin; Huatsoon Kek
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Presented in this paper is the investigation on sensitivity of micromachined condenser microphone. The sound-sensitive diaphragm of the microphone is formed by surface micromachined thin-film that is normally initially stressed due to the deposition process of the thin-film. Three varieties of diaphragm constructions, conventional flat diaphragm (FD), corrugated diaphragm (CD) and deep cavity-shaped diaphragm (DCD), are involved into the study. Both analysis and finite element model (FEM) are used for comparison of the mechanical sensitivity of the different kinds of diaphragm. Reasonable initial stress range of poly crystalline silicon thin films is assumed for the microphones. The DCD shows a much higher mechanical sensitivity compared to the other two kinds of diaphragm for the assumed film-stress range. A fabrication technology of low tensile-stress poly-silicon film is also provided and proposed for the high sensitivity microphone with the DCD.

Paper Details

Date Published: 15 August 2000
PDF: 8 pages
Proc. SPIE 4176, Micromachined Devices and Components VI, (15 August 2000); doi: 10.1117/12.395641
Show Author Affiliations
Xinxin Li, Nanyang Technological Univ. (Japan)
Rongming Lin, Nanyang Technological Univ. (Singapore)
Huatsoon Kek, Nanyang Technological Univ. (Singapore)

Published in SPIE Proceedings Vol. 4176:
Micromachined Devices and Components VI
Eric Peeters; Oliver Paul, Editor(s)

© SPIE. Terms of Use
Back to Top