Share Email Print

Proceedings Paper

Predictor approach to closed-loop phase-diversity wavefront sensing
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present a novel and fast method for utilizing wavefront information in closed-loop phase-diverse image data. We form a 2D object-independent error function using the images at different focus positions together with OTFs of the diffraction limited system. Each coefficient in an expansion of the wavefront is estimated quickly and independently by calculating the inner produce of a corresponding predictor function and the error function. This operation is easy to parallelize. The main computational burden is in pre- processing, when the predictors are formed. This makes this method fast and therefore attractive for closed loop operation. Calculating the predictors involves error function derivatives with respect to the wavefront parameters, statistics of the parameters, noise levels and other known characteristics of the optical system. The predictors are optimized so that the RMS error in the wavefront parameters is minimized rather than consistency between estimated quantities with image data. We present simulation results that are relevant to the phasing of segmented mirrors in a space telescope, such as the NGST.

Paper Details

Date Published: 28 July 2000
PDF: 12 pages
Proc. SPIE 4013, UV, Optical, and IR Space Telescopes and Instruments, (28 July 2000); doi: 10.1117/12.394009
Show Author Affiliations
Mats G. Lofdahl, Stockholm Observatory (Sweden)
Goran B. Scharmer, Stockholm Observatory (Sweden)

Published in SPIE Proceedings Vol. 4013:
UV, Optical, and IR Space Telescopes and Instruments
James B. Breckinridge; Peter Jakobsen, Editor(s)

© SPIE. Terms of Use
Back to Top