Share Email Print
cover

Proceedings Paper

Development and application of diurnal thermal modeling for camouflage, concealment, and deception
Author(s): Mark L. B. Rodgers
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The art of camouflage is to make a military asset appear to be part of the natural environment: its background. In order to predict the likely performance of countermeasures in attaining this goal it is necessary to model the signatures of targets, backgrounds and the effect of countermeasures. A library of diurnal thermal models has been constructed covering a range of backgrounds from vegetated and non- vegetated surfaces to snow cover. These models, originally developed for Western Europe, have been validated successfully for theatres of operation from the arctic to the desert. This paper will show the basis for and development of physically based models for the diurnal thermal behavior both of these backgrounds and for major passive countermeasures: camouflage nets and continuous textile materials. The countermeasures set up significant challenges for the thermal modeler with their low but non-zero thermal inertial and the extent to which they influence local aerodynamic behavior. These challenges have been met and the necessary extensive validation has shown the ability of the models to predict successfully the behavior of in-service countermeasures.

Paper Details

Date Published: 24 July 2000
PDF: 9 pages
Proc. SPIE 4029, Targets and Backgrounds VI: Characterization, Visualization, and the Detection Process, (24 July 2000); doi: 10.1117/12.392546
Show Author Affiliations
Mark L. B. Rodgers, Defence Clothing and Textiles Agency (United Kingdom)


Published in SPIE Proceedings Vol. 4029:
Targets and Backgrounds VI: Characterization, Visualization, and the Detection Process
Wendell R. Watkins; Dieter Clement; William R. Reynolds, Editor(s)

© SPIE. Terms of Use
Back to Top