Share Email Print
cover

Proceedings Paper

Hyperspectral simulation of chemical weapon dispersal patterns using DIRSIG
Author(s): Peter S. Arnold; Scott D. Brown; John R. Schott
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Fieldable thermal infrared hyperspectral imaging spectrometers has made it possible to design and construct new instruments for better detection of battlefield hazards such as chemical weapon clouds. The availability of spectroscopic measurements of these clouds can be used not only for the detection and identification of specific chemical agents but also to potentially quantify the lethality of the cloud. The simulation of chemical weapon dispersal patterns in a synthetic imaging environment offers significant benefits to sensor designers. Such an environment allows designers to easily develop trade spaces to test detection and quantification algorithms without the need for expensive and dangerous field releases. This paper discusses the implementation of a generic gas dispersion model that has been integrated into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. The gas cloud model utilizes a 3D Gaussian distribution and first order dynamics (drift and dispersion) to drive the macro-scale cloud development and movement. The model also attempts to account for turbulence by incorporating fractional Brownian motion techniques to reproduce the micro-scale variances within the cloud. The cloud path length concentrations are then processed by the DIRSIG radiometry sub-model to compute the emission and transmission of the cloud body on a per-pixel basis. Example hyperspectral image cubes containing common agents and release amounts will be presented. Time lapse sequences will also be presented to demonstrate the evolution of the cloud over time.

Paper Details

Date Published: 24 July 2000
PDF: 12 pages
Proc. SPIE 4029, Targets and Backgrounds VI: Characterization, Visualization, and the Detection Process, (24 July 2000); doi: 10.1117/12.392538
Show Author Affiliations
Peter S. Arnold, Rochester Institute of Technology (United States)
Scott D. Brown, Rochester Institute of Technology (United States)
John R. Schott, Rochester Institute of Technology (United States)


Published in SPIE Proceedings Vol. 4029:
Targets and Backgrounds VI: Characterization, Visualization, and the Detection Process
Wendell R. Watkins; Dieter Clement; William R. Reynolds, Editor(s)

© SPIE. Terms of Use
Back to Top