Share Email Print

Proceedings Paper

Asymptotic methods applied to semiconductor laser models
Author(s): Thomas Erneux
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Semiconductor lasers subject to a weak external perturbation (optical injection, optical feedback) are unstable devices that generate pulsating intensities. Most of our understanding of these instabilities comes from intensive numerical simulations of simple model equations. These computations are long and delicate because the solution of the laser equations exhibits several time scales. Asymptotic methods may either simplify the laser original equations or lead to useful approximations of the solution of these equations. We illustrate these techniques by reviewing the Hopf bifurcation problem of the well known Lang and Kobayashi equations modeling a laser subject to optical feedback. Basic approximations are reviewed, a low pump problem is examined in detail, and analytical approximations of the (multiple) Hopf bifurcation line in the case of a short cavity are derived for the first time.

Paper Details

Date Published: 14 July 2000
PDF: 14 pages
Proc. SPIE 3944, Physics and Simulation of Optoelectronic Devices VIII, (14 July 2000); doi: 10.1117/12.391466
Show Author Affiliations
Thomas Erneux, Univ. Libre de Bruxelles (Belgium)

Published in SPIE Proceedings Vol. 3944:
Physics and Simulation of Optoelectronic Devices VIII
Rolf H. Binder; Peter Blood; Marek Osinski, Editor(s)

© SPIE. Terms of Use
Back to Top