Share Email Print
cover

Proceedings Paper

Nondestructive room-temperature characterization of wafer-sized III-V semiconductor device structures using contactless electromodulation and surface photovoltage spectroscopy
Author(s): Fred H. Pollak
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper will review the use of the contactless methods of photoreflectance (PR), contactless electroreflectance (CER), and surface photovoltage spectroscopy (SPS) for the nondestructive, room temperature characterization of a wide variety of wafer-scale semiconductor device structures. Some systems that will be discussed include heterojunction bipolar transistors such as graded emitter GaAlAs/GaAs and AlInAs/InGaAs as well as GaInP/GaAs (including the determination of the built-in fields/doping levels in the emitter and the collector regions, doping level and minority carrier lifetime in the base, alloy composition, and the degree of ordering in the GaInP), pseudomorphic GaAlAs/InGaAs/GaAs high electron mobility transistors (including the determination of the composition, width, and two-dimensional electron gas density in the channel), quantum well edge emitting lasers [InGaAsP/InP (including the detection of p-dopant interdiffusion), graded index of refraction separate confinement heterostructure GaAlAs/GaAs/InGaAs], vertical-cavity surface-emitting lasers (determination of fundamental conduction to heavy-hole excitonic transition and cavity mode), and InAs/GaAs quantum dot lasers. These methods are already being used by more than a dozen industries world-wide for the production-line qualification of these device structures.

Paper Details

Date Published: 14 July 2000
PDF: 15 pages
Proc. SPIE 3944, Physics and Simulation of Optoelectronic Devices VIII, (14 July 2000); doi: 10.1117/12.391445
Show Author Affiliations
Fred H. Pollak, CUNY/Brooklyn College (United States)


Published in SPIE Proceedings Vol. 3944:
Physics and Simulation of Optoelectronic Devices VIII
Rolf H. Binder; Peter Blood; Marek Osinski, Editor(s)

© SPIE. Terms of Use
Back to Top