Share Email Print
cover

Proceedings Paper

Transverse mode dynamics of VCSELs undergoing current modulation
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Transverse mode dynamics of a 20-micrometer-diameter vertical- cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5 - 30 ps, with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes.

Paper Details

Date Published: 14 July 2000
PDF: 8 pages
Proc. SPIE 3944, Physics and Simulation of Optoelectronic Devices VIII, (14 July 2000); doi: 10.1117/12.391431
Show Author Affiliations
Peter M. Goorjian, NASA Ames Research Ctr. (United States)
Cun-Zheng Ning, NASA Ames Research Ctr. (United States)
Govind P. Agrawal, The Institute of Optics/Univ. of Rochester (United States)


Published in SPIE Proceedings Vol. 3944:
Physics and Simulation of Optoelectronic Devices VIII
Rolf H. Binder; Peter Blood; Marek Osinski, Editor(s)

© SPIE. Terms of Use
Back to Top