Share Email Print
cover

Proceedings Paper

Novel inverse algorithm for borehole induction measurements using a spectral hybrid EBA forward method
Author(s): Qing Huo Liu; Zhong Qing Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We invert for the axisymmetric conductivity distribution from borehole electromagnetic induction measurements using a two-step linear inversion method based on a fast Fourier and Hankel transform enhanced extended Born approximation. In this method, the inverse problem is first cast as an under- determined linear least-norm problem for the induced electric current density; from the solution of this induced current density, the unknown conductivity distribution is then obtained by solving an over-determined linear problem using the newly developed, fast Fourier and Hankel transform enhanced extended Born approximation. Numerical results show that this inverse method is applicable to a very high conductivity contrast. It is a natural extension of the original two-step linear inversion method of Torres-Verdin and Habashy to axisymmetric media. In the first step, the CPU time costs O(N2). In the second step, the CPU time costs O(N log2 N) where N is the number of unknowns. Because of the fast Fourier and Hankel transform algorithm, this inverse method is actually more efficient than the conventional, brute-force first-order Born approximation.

Paper Details

Date Published: 6 July 2000
PDF: 12 pages
Proc. SPIE 4129, Subsurface Sensing Technologies and Applications II, (6 July 2000); doi: 10.1117/12.390641
Show Author Affiliations
Qing Huo Liu, Duke Univ. (United States)
Zhong Qing Zhang, Duke Univ. (United States)


Published in SPIE Proceedings Vol. 4129:
Subsurface Sensing Technologies and Applications II
Cam Nguyen, Editor(s)

© SPIE. Terms of Use
Back to Top