Share Email Print
cover

Proceedings Paper

Observational model for the Space Interferometry Mission
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The Space Interferometry Mission (SIM) is a space-based long-baseline optical interferometer for precision astrometry. One of the primary objectives of the SIM instrument is to accurately determine the directions to a grid of stars, together with their proper motions and parallax, improving a priori knowledge by nearly three orders of magnitude. The basic astrometric observable of the instrument is the pathlength delay, a measurement made by a combination of internal metrology measurements that determine the distance the starlight travels through the two arms of the interferometer and a measurement of the white light stellar fringe to find the point of equal pathlength. Because this operation requires a non-negligible integration time to accurately measure the stellar fringe position, the interferometer baseline vector is not stationary over this time period, as its absolute length and orientation are time-varying. This conflicts with the consistency condition necessary for extracting the astrometric parameters which requires a stationary baseline vector. This paper addresses how the time-varying baseline is `regularized' so that it may act as a single baseline vector for multiple stars.

Paper Details

Date Published: 5 July 2000
PDF: 10 pages
Proc. SPIE 4006, Interferometry in Optical Astronomy, (5 July 2000); doi: 10.1117/12.390284
Show Author Affiliations
Mark H. Milman, Jet Propulsion Lab. (United States)
Slava G. Turyshev, Jet Propulsion Lab. (United States)


Published in SPIE Proceedings Vol. 4006:
Interferometry in Optical Astronomy
Pierre J. Lena; Andreas Quirrenbach, Editor(s)

© SPIE. Terms of Use
Back to Top