Share Email Print

Proceedings Paper

Design of robust controllers for smart structural systems with structured uncertainties
Author(s): Sridhar Sana; Vittal S. Rao
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Effective integration of sensors, actuators and controllers with the structures is key to the success of smart structures. This concept has been manifested in numerous applications of smart structures in the areas such as civil, aerospace and automotive engineering. Control systems to be integrated with the structure is of paramount importance for ensuring the performance requirements in the presence of modal parameter variations, modeling errors and control effort constraints. The primary uncertainty associated with smart structural systems use the natural frequency variations. Linear Matrix Inequalities (LMIs) can be utilized to incorporate the real parameter uncertainty due to parameter variations and control input limits in the controller design. One of the challenges in the design of such controllers is the conservatism due to over bounding effect from the multiple constraints. Additional conservatism can also come from the approximation of the real parametric uncertainty due to modal parameter variations as sector bounded nonlinear, time varying or complex valued uncertainty. Using the traditional robustness analysis methods such as small gain theorem in the controller design will result in conservative designs leading to poor performance. In this paper, we present a controller synthesis procedure based on Popov stability results for reducing the conservatism in the design. Robust controllers are designed for real- parametric uncertainty arising from natural frequency variations in the presence of control input limits. Maximum possible attenuation in the structural response due to finite energy disturbances is also achieved. Trade-off between the robustness versus the control input limit is discussed. The design procedure is applied on a smart structural test article and the results are presented.

Paper Details

Date Published: 19 June 2000
PDF: 13 pages
Proc. SPIE 3984, Smart Structures and Materials 2000: Mathematics and Control in Smart Structures, (19 June 2000); doi: 10.1117/12.388806
Show Author Affiliations
Sridhar Sana, Univ. of Missouri/Rolla (United States)
Vittal S. Rao, Univ. of Missouri/Rolla (United States)

Published in SPIE Proceedings Vol. 3984:
Smart Structures and Materials 2000: Mathematics and Control in Smart Structures
Vasundara V. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top