Share Email Print

Proceedings Paper

Neurofuzzy-model-based feedback controller for shape memory alloy actuators
Author(s): Akihiko Kumagai; Paul A. Hozian; Michael Kirkland
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper describes development of a motion controller for Shape Memory Alloy (SMA) actuators using a dynamic model generated by a neuro-fuzzy inference system. This kind of smart alloy is known to have a unique characteristic in that its shape can be controlled by temperature that can be varied by passing a current through it. Using SMA actuators, it would be possible to design miniature mechanisms for a variety of applications. Today SMA is used for valves, latches, and locks, which are automatically activated by heat. However it has not been used as a motion control device due to difficulty in the treatment of its highly non-linear strain-stress hysteresis characteristic which is further influenced by its temperature. In this project, a dynamic model of a SMA actuator is developed using ANFIS, a neuro-fuzzy inference system provided in MATLAB environment. Using neuro-fuzzy logic, the system identification of the dynamic system is performed by observing the change of state variables (displacement and velocity) responding to a known input (voltage across the SMA actuator). Then, using the dynamic model, the estimated input voltage required to follow a desired trajectory is calculated in an open-loop manner. The actual input voltage supplied to the SMA actuator is the sum of this open-loop input voltage and an input voltage calculated from an ordinary PD control scheme. This neuro- fuzzy logic-based control scheme is a very generalized scheme that can be used for a variety of SMA actuators. Experimental results are provided to demonstrate the potential for this type of controller to control the motion of the SMA actuator.

Paper Details

Date Published: 19 June 2000
PDF: 9 pages
Proc. SPIE 3984, Smart Structures and Materials 2000: Mathematics and Control in Smart Structures, (19 June 2000); doi: 10.1117/12.388772
Show Author Affiliations
Akihiko Kumagai, Wayne State Univ. (United States)
Paul A. Hozian, Wayne State Univ. (United States)
Michael Kirkland, Wayne State Univ. (United States)

Published in SPIE Proceedings Vol. 3984:
Smart Structures and Materials 2000: Mathematics and Control in Smart Structures
Vasundara V. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top