Share Email Print
cover

Proceedings Paper

Measuring the effects of sub-0.1-μm filtration on 248-nm photoresist performance
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Photolithography is a key technology driver enabling next generation processes. As line widths decrease to 0.18 micrometer and below, the critical size of particulate contamination decreases proportionately. The implementation of filtration below 0.1 micrometer within existing dispense systems raises concern as the removal rating of the filter approaches the size of large molecular weight components of the photoresist. This study was undertaken in order to determine the effects, if any, of 0.05 micrometer and finer filtration on photoresist performance. Utilizing 248 nm DUV resist, filters were tested in two latest generation dispense pumps, one nitrogen pressurization, and the other having a stepper motor and diaphragm. The coated 200 mm wafers were exposed at increasing exposure dose and focus in a DUV scanner to produce 0.18 micrometer features. This study concludes that as the filter removal rating became finer, the resist performance in terms of photospeed, process window or thermal stability did not change. This indicates that, using existing dispense systems, photoresists can be filtered as fine as 0.03 micrometer without significant polymer shearing or the unintentional removal of important materials from the resist. Based on these data, appropriate protection in terms of particle removal is possible as line widths necessitate the use of finer filters in resist dispense pumps.

Paper Details

Date Published: 23 June 2000
PDF: 8 pages
Proc. SPIE 3999, Advances in Resist Technology and Processing XVII, (23 June 2000); doi: 10.1117/12.388292
Show Author Affiliations
Barry Gotlinsky, Pall Corp. (United States)
James V. Beach, International SEMATECH (United States)
Michael Mesawich, Pall Corp. (United States)


Published in SPIE Proceedings Vol. 3999:
Advances in Resist Technology and Processing XVII
Francis M. Houlihan, Editor(s)

© SPIE. Terms of Use
Back to Top