Share Email Print

Proceedings Paper

High-performance EB chemically amplified resists using alicyclic protective groups
Author(s): Jun-Ichi Kon; Koji Nozaki; Takahisa Namiki; Ei Yano
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The impact of alicyclic protective groups on acid-labile substituents in a vinylphenol-methacrylate-based chemically amplified positive resist was investigated. The resist consists of the copolymer of vinylphenol and adamantyl methacrylate (VP/AdMA) with triflate onium salt as a photo- acid generator. The alicyclic protective groups in our system show a higher reactivity and higher hydrophobicity than those of the tert-butyl group, which is widely used in chemically amplified resists. The resists containing the alicyclic protective group resolved 0.09-micrometer hole patterns at 6 (mu) C/cm2, and a resist with a base additive resolved 0.12-micrometer line and space patterns at 9.0 (mu) C/cm2 using a 50-keV EB lithography system with a 2.38% TMAH aqueous solution as the developer. The dry etching durability of resists containing the alicyclic group was also compared with resists containing the tert-butyl group and with polyvinylphenol (PVP). The dry etching durability of our resists for a C4F8 plasma was 1.3 times superior to that of resist containing the tert-butyl group, and 1.1 times better than that of PVP. This means the thickness of film in pattern fabrication can be reduced to obtain a higher sensitivity and higher resolution.

Paper Details

Date Published: 23 June 2000
PDF: 8 pages
Proc. SPIE 3999, Advances in Resist Technology and Processing XVII, (23 June 2000); doi: 10.1117/12.388288
Show Author Affiliations
Jun-Ichi Kon, Fujitsu Labs. Ltd. (Japan)
Koji Nozaki, Fujitsu Labs. Ltd. (Japan)
Takahisa Namiki, Fujitsu Labs. Ltd. (Japan)
Ei Yano, Fujitsu Labs. Ltd. (Japan)

Published in SPIE Proceedings Vol. 3999:
Advances in Resist Technology and Processing XVII
Francis M. Houlihan, Editor(s)

© SPIE. Terms of Use
Back to Top