Share Email Print
cover

Proceedings Paper

Finite element analysis of electric-field-assisted bonding
Author(s): James G. Boyd; Eniko T. Enikov
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An anodic bond is modeled as a moving nonmaterial line forming the intersection of three material surfaces representing the unbonded conductor, the unbonded insulator, and the bonded interface. The component mass balance equations, Gauss' law, and the linear momentum equations are placed in a finite element formulation, which is used to predict the evolution of the sodium ion concentration, electric potential, and stress during anodic bonding of Pyrex glass and silicon.

Paper Details

Date Published: 14 June 2000
PDF: 13 pages
Proc. SPIE 3992, Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics, (14 June 2000); doi: 10.1117/12.388215
Show Author Affiliations
James G. Boyd, Univ. of Illinois/Chicago (United States)
Eniko T. Enikov, Univ. of Minnesota/Twin Cities (United States)


Published in SPIE Proceedings Vol. 3992:
Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics
Christopher S. Lynch, Editor(s)

© SPIE. Terms of Use
Back to Top