Share Email Print
cover

Proceedings Paper

Development of fiber Bragg-grating-based soil pressure transducer for measuring pavement response
Author(s): Chia-Chen Chang; Gregg Johnson; Sandeep T. Vohra; Bryan Althouse
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A soil pressure transducer by using fiber Bragg grating (FBG) sensors associated with a circular diaphragm is developed. The FBG based transducers can be used for pavement performance study and weigh-in-motion measurement. We consider three methods of bonding the FBG to the diaphragm: (1) radially, (2) radially, inside a glass capillary, and (3) circumferentially. The investigation of strain-gradient induced spectral broadening in FBG-based transducers is conducted since spectral broadening can have adverse effects on the sensor interrogations. We derive analytical closed form results for describing measurand-induced strain gradients in circular geometry transducers, which allow us to experimentally demonstrate novel FBG bonding approaches that eliminate spectral broadening. In addition, Bragg spectral broadening analysis using T-matrix calculation is also conducted to validate some of the experimental results. Two prototypes of soil pressure transducers are field tested at the Cold Region Research Engineering Laboratory (CRREL). The buried pressure transducers are impact-tested by use of a Falling-Weight- Deflectometer (FWD), and detected by NRL-developed FBG interrogation device. Lastly, we use the Boussinesq equation to verify the soil stress measured by the buried transducers.

Paper Details

Date Published: 12 June 2000
PDF: 9 pages
Proc. SPIE 3986, Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, (12 June 2000); doi: 10.1117/12.388139
Show Author Affiliations
Chia-Chen Chang, Naval Research Lab. and Virginia Polytechnic Institute and State Univ. (United States)
Gregg Johnson, Naval Research Lab. (United States)
Sandeep T. Vohra, Naval Research Lab. (United States)
Bryan Althouse, Naval Research Lab. (United States)


Published in SPIE Proceedings Vol. 3986:
Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials
Richard O. Claus; William B. Spillman, Editor(s)

© SPIE. Terms of Use
Back to Top