Share Email Print
cover

Proceedings Paper

Refractive index of human whole blood with different types in the visible and near-infrared ranges
Author(s): Hui Li; Lei Lin; Shusen Xie
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Knowledge of the optical properties of human whole blood has always been of great interest for medical applications. The aim of this study was to provide the dispersive relations of refractive index of human whole blood with different types in the visible and near-infrared ranges and other conditions. In order to overcome the scattering effect, we applied an unusual method based on total internal reflection. A focused light, a semicylindrical lens in contact with tissues and a linear CCD camera are used in the experimental apparatus. The critical angle and therefore the refractive index can be obtained from the spacial distribution of internal reflective light. A monochromator is chosen as the light source, the chromatic dispersion curve of materials can be determined directly and quickly. A set of values has been presented that relates the refractive index to wavelength and types of whole, undiluted blood. Our results suggest that the refractive dispersions be almost the same in the visible and near-infrared ranges no matter which blood type it belongs to. In addition, the relationship can be described by Cauchy's formula.

Paper Details

Date Published: 13 June 2000
PDF: 5 pages
Proc. SPIE 3914, Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical, (13 June 2000); doi: 10.1117/12.388073
Show Author Affiliations
Hui Li, Fujian Teachers Univ. (China)
Lei Lin, Fujian Teachers Univ. (China)
Shusen Xie, Fujian Teachers Univ. (China)


Published in SPIE Proceedings Vol. 3914:
Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical
Jeffrey O. Hollinger; Donald Dean Duncan; Jeffrey O. Hollinger; Donald Dean Duncan; Steven L. Jacques, Editor(s)

© SPIE. Terms of Use
Back to Top