Share Email Print
cover

Proceedings Paper

Mechanical characterization of active polymer gels
Author(s): Steven P. Marra; Kaliat T. Ramesh; Andrew S. Douglas
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Ionic polymer gels shrink and swell in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as actuators and artificial muscles. This work focuses on developing a means of characterizing the mechanical properties of such ionic gels and describing how these properties evolve as the gel actuates. A thermodynamically consistent finite elastic constitutive model of an active polymer gel is developed to describe this behavior. The mechanical properties of the gel are characterized by a strain-energy function and the model utilizes an evolving internal variable to describe the actuation state. Applications of the mode to poly(vinyl alcohol)-poly (acrylic acid) gels are presented.

Paper Details

Date Published: 7 June 2000
PDF: 5 pages
Proc. SPIE 3987, Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices (EAPAD), (7 June 2000); doi: 10.1117/12.387774
Show Author Affiliations
Steven P. Marra, Johns Hopkins Univ. (United States)
Kaliat T. Ramesh, Johns Hopkins Univ. (United States)
Andrew S. Douglas, Johns Hopkins Univ. (United States)


Published in SPIE Proceedings Vol. 3987:
Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices (EAPAD)
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top