Share Email Print
cover

Proceedings Paper

Motion blur in fluoroscopy: effects, identification, and restoration
Author(s): Claudia Mayntz; Til Aach; Dietmar Kunz; Jan-Michael Frahm
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In continuous X-ray fluoroscopy images are sometimes blurred uniformly due to motion of the operating table. Additionally, low-dose fluoroscopy images are degraded by relatively strong quantum noise, which is not affected by the blur. We quantify the degradation due to motion blur by assessing the blur's effect on the Detective Quantum Efficiency (DQE), which captures the signal- and noise transfer properties of an imaging system. The estimation of the motion blur parameters, viz. direction and extent, is carried out one after the other. The central idea for direction detection is to apply an inertia-like matrix to the global spectrum of the degraded image, which assesses the anisotropy caused by the blur. Once the blur direction is obtained by this tensor approach, its extent is identified from an estimated power spectrum or bispectrum slice along this direction. The decision for either method is based on the eigenvalues of the inertia matrix. The blur parameters are used as input for a nonlinear Maximum-a- posteriori restoration technique based on a Generalized Gauss- Markov Random field for which several efficient optimization strategies are presented. This approach includes a thresholdless edge model. The DQE is generalized as a quality measure to assess the signal- and noise transfer properties of the restoration method.

Paper Details

Date Published: 6 June 2000
PDF: 12 pages
Proc. SPIE 3979, Medical Imaging 2000: Image Processing, (6 June 2000); doi: 10.1117/12.387722
Show Author Affiliations
Claudia Mayntz, Medical Univ. of Luebeck (Germany)
Til Aach, Medical Univ. of Luebeck (Germany)
Dietmar Kunz, Philips Research Labs. (Germany)
Jan-Michael Frahm, Medical Univ. of Luebeck (Germany)


Published in SPIE Proceedings Vol. 3979:
Medical Imaging 2000: Image Processing
Kenneth M. Hanson, Editor(s)

© SPIE. Terms of Use
Back to Top