Share Email Print
cover

Proceedings Paper

Light scattering by rough dielectric surface
Author(s): Vitali E. Gruzdev; Anastasia S. Gruzdeva
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Numerical modelling is applied to investigation of scattering of plane linearly polarized monochromatic wave by sine variations of dielectric surface relief. The modelling is based on finite-difference time-domain technique. Results of modelling include 1) space distribution of scattered light, 2) dependence of field amplification on ratio of roughness amplitude to laser wavelength, and 3) dependence of field amplification on ratio of roughness period to laser wavelength. Obtained results show that for TE polarization a) transmitted signal is more sensitive to roughness parameters than reflected one, b) there is narrow resonance in dependence of amplitude of scattered field on laser wavelength and roughness period, c) dependence of amplitude of scattered field on roughness amplitude is described by parabolic function for small values of relief amplitude. Depending on relief amplitude and period, scattering by sine roughness can result in formation of inhomogeneous space field distribution consisting of periodic field maxima inside dielectric or formation of homogeneous distribution such that both transmitted and reflected signals are close to plane wave. We consider the following applications of obtained results: 1) possibility to develop a new technique for in-situ surface roughness charactensation, 2) possible mechanisms of feedbacks during laser-induced formation of surface ripples, and 3) anti-reflection effect.

Paper Details

Date Published: 7 June 2000
PDF: 13 pages
Proc. SPIE 3933, Laser Applications in Microelectronic and Optoelectronic Manufacturing V, (7 June 2000); doi: 10.1117/12.387579
Show Author Affiliations
Vitali E. Gruzdev, S. I. Vavilov State Optical Institute (Russia)
Anastasia S. Gruzdeva, S. I. Vavilov State Optical Institute (Russia)


Published in SPIE Proceedings Vol. 3933:
Laser Applications in Microelectronic and Optoelectronic Manufacturing V
Henry Helvajian; Koji Sugioka; Malcolm C. Gower; Jan J. Dubowski, Editor(s)

© SPIE. Terms of Use
Back to Top