Share Email Print

Proceedings Paper

Perceptual issues in substituting texture for geometry
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An important goal in interactive computer graphics is to allow the user to interact dynamically with three-dimensional objects. The computing resources required to represent, transmit and display a three dimensional object depends on the number of polygons used to represent it. Many geometric simplification algorithms have been developed to represent the geometry with as few polygons as possible, without substantially changing the appearance of the rendered object. A popular method for achieving geometric simplification is to replace fine scale geometric detail with texture images mapped onto the simplified geometry. However the effectiveness of replacing geometry with texture has not been explored experimentally. In this paper we describe a visual experiment in which we examine the perceived quality of various representations of textured, geometric objects, viewed under direct and oblique illumination. We used a pair of simple large scale objects with different fine-scale geometric detail. For each object we generated many representations, varying the resources allocated to geometry and texture. The experimental results show that while replacing geometry with texture can be very effective, in some cases the addition of texture does not improve perceived quality, and can sometimes reduce the perceived quality.

Paper Details

Date Published: 2 June 2000
PDF: 12 pages
Proc. SPIE 3959, Human Vision and Electronic Imaging V, (2 June 2000); doi: 10.1117/12.387174
Show Author Affiliations
Holly E. Rushmeier, IBM Thomas J. Watson Research Ctr. (United States)
Bernice E. Rogowitz, IBM Thomas J. Watson Research Ctr. (United States)
Christine Piatko, Johns Hopkins Univ. (United States)

Published in SPIE Proceedings Vol. 3959:
Human Vision and Electronic Imaging V
Bernice E. Rogowitz; Thrasyvoulos N. Pappas, Editor(s)

© SPIE. Terms of Use
Back to Top