Share Email Print
cover

Proceedings Paper

Wafer-level colinearity monitoring for TFH applications
Author(s): Patrick Moore; Gary Newman; Kelly J. Abreau
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Advances in thin film head (TFH) designs continue to outpace those in the IC industry. The transition to giant magneto resistive (GMR) designs is underway along with the push toward areal densities in the 20 Gbit/inch2 regime and beyond. This comes at a time when the popularity of the low-cost personal computer (PC) is extremely high, and PC prices are continuing to fall. Consequently, TFH manufacturers are forced to deal with pricing pressure in addition to technological demands. New methods of monitoring and improving yield are required along with advanced head designs. TFH manufacturing is a two-step process. The first is a wafer-level process consisting of manufacturing devices on substrates using processes similar to those in the IC industry. The second half is a slider-level process where wafers are diced into 'rowbars' containing many heads. Each rowbar is then lapped to obtain the desired performance from each head. Variation in the placement of specific layers of each device on the bar, known as a colinearity error, causes a change in device performance and directly impacts yield. The photolithography tool and process contribute to colinearity errors. These components include stepper lens distortion errors, stepper stage errors, reticle fabrication errors, and CD uniformity errors. Currently, colinearity is only very roughly estimated during wafer-level TFH production. An absolute metrology tool, such as a Nikon XY, could be used to quantify colinearity with improved accuracy, but this technique is impractical since TFH manufacturers typically do not have this type of equipment at the production site. More importantly, this measurement technique does not provide the rapid feedback needed in a high-volume production facility. Consequently, the wafer-fab must rely on resistivity-based measurements from slider-fab to quantify colinearity errors. The feedback of this data may require several weeks, making it useless as a process diagnostic. This study examines a method of quickly estimating colinearity at the wafer-level with a test reticle and metrology equipment routinely found in TFH facilities. Colinearity results are correlated to slider-fab measurements on production devices. Stepper contributions to colinearity are estimated, and compared across multiple steppers and stepper generations. Multiple techniques of integrating this diagnostic into production are investigated and discussed.

Paper Details

Date Published: 2 June 2000
PDF: 8 pages
Proc. SPIE 3998, Metrology, Inspection, and Process Control for Microlithography XIV, (2 June 2000); doi: 10.1117/12.386510
Show Author Affiliations
Patrick Moore, Seagate Inc. (United States)
Gary Newman, Nikon Precision Inc. (United States)
Kelly J. Abreau, Nikon Precision Inc. (United States)


Published in SPIE Proceedings Vol. 3998:
Metrology, Inspection, and Process Control for Microlithography XIV
Neal T. Sullivan, Editor(s)

© SPIE. Terms of Use
Back to Top