Share Email Print
cover

Proceedings Paper

Role of photoacoustic effects occurring at laser perforation of skin and laser transcutaneous drug delivery
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A further study is given of photoacoustic (PA) drug delivery technologies using an Er:YAG laser, with the main emphasis being placed on the laser perforation of skin and on PA impregnation using an additional covering quartz plate. A mathematical model based on Fick's law for PA impregnation with regard to a free and rigid interface is considered. The histological examination of the perforated guinea-pig skin ex vivo shoed that a powerful PA wave forced skin epidermis to be bent inwards. In biopsies taken 15 min later the nuclei pyknosis of epidermis cells lining the perforated channel was observed. In biopsies obtained 36 hours later an insignificant necrotic lesion remained, whereas 120 hours laser the cells recovered. I twas shown experimentally that the PA signal increased 30 times after applying a quartz plate over the drug solution, which substantially enhanced drug penetration through the skin .The dependancies were obtained of the penetration depth of the haematoporphyrin derivative photosensitizer versus the number of laser pulses and the pressing force applied to the quartz plate. The chromatographic fractionation of Diprospan and Dexamethasone hormonal preparations prior to and after the action of 200 Er:YAG laser-induced PA waves demonstrated that no additional chemical agents resulting from drug dissociation were detected. The application of laser drug delivery methods in respect of treating dermatological diseases is also discussed.

Paper Details

Date Published: 19 May 2000
PDF: 12 pages
Proc. SPIE 3916, Biomedical Optoacoustics, (19 May 2000); doi: 10.1117/12.386323
Show Author Affiliations
Vladimir P. Zharov, Bauman Moscow State Technical Univ. (United States)
Alexei S. Latyshev, Bauman Moscow State Technical Univ. (Russia)


Published in SPIE Proceedings Vol. 3916:
Biomedical Optoacoustics
Alexander A. Oraevsky, Editor(s)

© SPIE. Terms of Use
Back to Top