Share Email Print
cover

Proceedings Paper

Linear lesions in heart tissue using diffused laser radiation
Author(s): Nathaniel M. Fried; Albert C. Lardo; Ronald D. Berger; Hugh Calkins; Henry R. Halperin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Transmural, continuous, and linear lesions may be necessary for successful catheter ablation of cardiac arrythmias such as atrial fibrillation. Laser ablation was studied as an alternative to radiofrequency ablation, which is noted to produce superficial and discontinuous lesions as well as tissue charring and vaporization. Samples of canine myocardium were placed in a saline bath and irradiated with an 1.06- micrometer Nd:YAG laser operated in either pulsed or continuous mode. For pulsed mode, the laser pulse duration was 10 s with 10 s cooling between pulses. Laser radiation was delivered radially through diffusing optical fiber tips oriented parallel to the endocardial surface. In CW mode, transmural (6-mm-deep), linear (16-mm-long), and continuous lesions were produced using a laser power of 30 W and an irradiation time of 180 s. Peak tissue temperatures measured 51 plus or minus 1 degree Celsius at the endocardial surface, 61 plus or minus 6 degrees Celsius in the mid-myocardium, and 55 plus or minus 6 degree Celsius at the epicardial surface. There was no evidence of tissue charring or vaporization. Pulsed laser irradiation produced comparable lesion depths to CW irradiation with more uniform heating of the subsurface myocardium, but at the expense of longer operation times. Further in vivo study of laser ablation is warranted for possible clinical applications.

Paper Details

Date Published: 17 May 2000
PDF: 8 pages
Proc. SPIE 3907, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems X, (17 May 2000); doi: 10.1117/12.386298
Show Author Affiliations
Nathaniel M. Fried, Johns Hopkins Univ. (United States)
Albert C. Lardo, Johns Hopkins Univ. (United States)
Ronald D. Berger, Johns Hopkins Univ. (United States)
Hugh Calkins, Johns Hopkins Univ. (United States)
Henry R. Halperin, Johns Hopkins Univ. (United States)


Published in SPIE Proceedings Vol. 3907:
Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems X
R. Rox Anderson; Kenton W. Gregory; Eugene A. Trowers; David S. Robinson; Kenneth Eugene Bartels; Lou Reinisch; Reza S. Malek; C. Gaelyn Garrett; Lloyd P. Tate; Hans-Dieter Reidenbach; Timothy A. Woodward; Kenneth Eugene Bartels; Lawrence S. Bass; George M. Peavy; C. Gaelyn Garrett; Kenton W. Gregory; Nikiforos Kollias; Harvey Lui; Reza S. Malek; George M. Peavy; Hans-Dieter Reidenbach; Lou Reinisch; David S. Robinson; Lloyd P. Tate; Eugene A. Trowers; Timothy A. Woodward, Editor(s)

© SPIE. Terms of Use
Back to Top