Share Email Print

Proceedings Paper

Skin thermal response to sapphire contact and cryogen spray cooling: a comparative study based on measurements in a skin phantom
Author(s): Jorge H. Torres; J. Stuart Nelson; B. Samuel Tanenbaum; Bahman Anvari
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Non-specific thermal injury to the epidermis may occur as a result of laser treatment of cutaneous hypervascular malformations (e.g. port wine stains) and other dermatoses. Methods to protect the epidermis from thermal injury include sapphire contact cooling (SCC) and cryogen spray cooling (CSC). Evaluation of the skin thermal response to either cooling method and better understanding of the heat transfer process at the skin surface are essential for further optimization of cooling technique during laser therapy. We present internal temperature measurements in an epoxy resin phantom in response to both SCC and CSC, and use the results in conjunction with a mathematical model to predict the temperature distributions within human skin. Based on our results, a conductive heat transfer process at the skin interface appears to be the primary mechanism for both SCC and CSC. In the case of CSC, 'film cooling' rather than 'evaporative cooling' seems to be the dominant mode during the spurt duration. Currently, due to the lower temperature of the cryogen film and its shorter time of application, CSC produces larger temperature reductions at the skin surface and smaller temperature reductions at depths greater than 200 micrometer (i.e., higher spatial selectivity) when compared to SCC. However, SCC can potentially induce temperature reductions comparable to those produced by CSC if a sapphire temperature similar to that for a cryogen could be achieved in practice.

Paper Details

Date Published: 17 May 2000
PDF: 8 pages
Proc. SPIE 3907, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems X, (17 May 2000); doi: 10.1117/12.386264
Show Author Affiliations
Jorge H. Torres, Rice Univ. (United States)
J. Stuart Nelson, Beckman Laser Institute and Medical Clinic (United States)
B. Samuel Tanenbaum, Harvey Mudd College (United States)
Bahman Anvari, Rice Univ. (United States)

Published in SPIE Proceedings Vol. 3907:
Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems X
R. Rox Anderson; Kenton W. Gregory; Eugene A. Trowers; David S. Robinson; Kenneth Eugene Bartels; Lou Reinisch; Reza S. Malek; C. Gaelyn Garrett; Lloyd P. Tate; Hans-Dieter Reidenbach; Timothy A. Woodward; Kenneth Eugene Bartels; Lawrence S. Bass; George M. Peavy; C. Gaelyn Garrett; Kenton W. Gregory; Nikiforos Kollias; Harvey Lui; Reza S. Malek; George M. Peavy; Hans-Dieter Reidenbach; Lou Reinisch; David S. Robinson; Lloyd P. Tate; Eugene A. Trowers; Timothy A. Woodward, Editor(s)

© SPIE. Terms of Use
Back to Top