Share Email Print
cover

Proceedings Paper

In-vivo experimental evaluation of nonablative skin remodeling using a 1.54-um laser with surface cooling
Author(s): Serge R. Mordon; Alexandre Capon M.D.; Collette Creusy M.D.; Laurence Fleurisse M.D.; Bruno Buys; Marc A. Faucheux; Pascal Servell
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Selective dermal remodeling using diode or 1.32 micrometer Nd:YAG lasers has been recently proposed for skin rejuvenation. This new technique consists in inducing collagen tightening and/or neocollagen synthesis without significant damage of the overlying epidermis. Such an approach requires (1) a cooling system in order to target dermal collagen with relatively good protection of the epidermal layer, (2) a specific wavelength for confining the thermal damage into the upper dermis (100 to 400 micrometer). Based on previous studies, demonstrating a better water absorption and a reduced melanin absorption at 1.54 micrometer compared to the 1.32 micrometer, this experimental study aimed to evaluate a new laser (co-doped Yb-Er:phosphate glass material, Aramis, Quantel-France) emitting at 1.54 micrometer. This laser was used in combination with the Dermacool system (Dermacool, Mableton, USA) in order to achieve epidermis cooling before, during and after irradiation. Male hairless rats were used for the study. Pulse train irradiation (1.1 J, 3 Hz, 30 pulses) and different cooling temperatures (+5 degree(s)C, 0 degree(s)C, -5 degree(s)C) were screened with clinical examination and histological evaluation at 1, 3, and 7 days after laser irradiation. The clinical effects showed that pulse train irradiation produced reproducible epidermal preservation and confinement of the thermal damage into the dermis. The different cooling temperatures did not provide detectable differences in terms of size and depth of thermal damage. New collagen synthesis was confirmed by a marked fibroblastic proliferation, detected in the lower dermis at D3 and clearly seen in the upper dermis at D7. This new laser appears to be a promising new tool for the treatment of skin laxity, solar elastosis, facial rhytids and mild reduction of wrinkles.

Paper Details

Date Published: 17 May 2000
PDF: 11 pages
Proc. SPIE 3907, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems X, (17 May 2000); doi: 10.1117/12.386248
Show Author Affiliations
Serge R. Mordon, Univ. Hospital Lille/ISERM (France)
Alexandre Capon M.D., Univ. Hospital Lille/INSERM (France)
Collette Creusy M.D., Hopital Saint Vincent/Catholic Univ. (France)
Laurence Fleurisse M.D., Hoptial Saint Vincent/Catholic Univ. (France)
Bruno Buys, Univ. Hospital Lille/INSERM (France)
Marc A. Faucheux, Quantel Medical (France)
Pascal Servell, Quantel Medical (France)


Published in SPIE Proceedings Vol. 3907:
Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems X
R. Rox Anderson M.D.; Kenton W. Gregory M.D.; Eugene A. Trowers M.D.; David S. Robinson M.D.; Kenneth Eugene Bartels D.V.M.; Lou Reinisch; Reza S. Malek M.D.; C. Gaelyn Garrett M.D.; Lloyd P. Tate V.D.M.; Hans-Dieter Reidenbach; Timothy A. Woodward M.D.; Kenneth Eugene Bartels D.V.M.; Lawrence S. Bass M.D.; George M. Peavy D.V.M.; C. Gaelyn Garrett M.D.; Kenton W. Gregory M.D.; Nikiforos Kollias; Harvey Lui M.D.; Reza S. Malek M.D.; George M. Peavy D.V.M.; Hans-Dieter Reidenbach; Lou Reinisch; David S. Robinson M.D.; Lloyd P. Tate V.D.M.; Eugene A. Trowers M.D.; Timothy A. Woodward M.D., Editor(s)

© SPIE. Terms of Use
Back to Top