Share Email Print

Proceedings Paper

Simple fiber-optic technique for in-situ corrosion sensing in structures
Author(s): Nahar Singh; Subhash C. Jain; Anil K. Aggarwal; Madan L. Singla; Mewa Singh
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Corrosion of structures is a serious problem involving man and material safety. Over the years, though several methods of monitoring corrosion have been devised with some success, but there is a persistent need for devising non-destructive and in-situ techniques for monitoring corrosion in structures. Fiber optic techniques are capable of meeting these requirements, besides offering several other important advantages. Fiber optic corrosion sensors have thus become quite attractive and are currently being investigated to address the high costs associated with the existing structural maintenance procedures. Fiber optics based direct absorption spectroscopic techniques investigated by some groups for estimating corrosion have used single fiber elements for recording the signal reflected from specimen at different wavelengths. As the light coupling efficiency of the single fiber elements is relatively poor in comparison with that of fiber bundles and the signal available for processing is weak, the paper presents a simple and alternate technique based on the color matching principle of fiber optic colorimetry to detect corrosion induced color changes. It employs a thin Y- shaped fiber optic bundle which increases the quantity of light energy coupled from a whitelight source. The light reflected off the sample is made incident on a PIN photo- detector through a complementary filter. A series of such probes can be safety embedded and or bonded to structures at pre-determined locations. The experimental set up for this sensor was implemented and feasibility of in-situ corrosion detection in structures demonstrated. Measurement data was acquired for steel samples corroded both in concrete embedded and open ambience conditions and results analyzed.

Paper Details

Date Published: 13 May 2000
PDF: 5 pages
Proc. SPIE 3993, Nondestructive Evaluation of Aging Materials and Composites IV, (13 May 2000); doi: 10.1117/12.385492
Show Author Affiliations
Nahar Singh, Central Scientific Instruments Organisation (India)
Subhash C. Jain, Central Scientific Instruments Organisation (India)
Anil K. Aggarwal, Central Scientific Instruments Organisation (India)
Madan L. Singla, Central Scientific Instruments Organisation (India)
Mewa Singh, Central Scientific Instruments Organisation (India)

Published in SPIE Proceedings Vol. 3993:
Nondestructive Evaluation of Aging Materials and Composites IV
George Y. Baaklini; Carol A. Nove; Eric S. Boltz, Editor(s)

© SPIE. Terms of Use
Back to Top