Share Email Print
cover

Proceedings Paper

Dynamic 3D computed tomography scanner for vascular imaging
Author(s): Mark K. Lee; David W. Holdsworth; Aaron Fenster
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A 3D dynamic computed-tomography (CT) scanner was developed for imaging objects undergoing periodic motion. The scanner system has high spatial and sufficient temporal resolution to produce quantitative tomographic/volume images of objects such as excised arterial samples perfused under physiological pressure conditions and enables the measurements of the local dynamic elastic modulus (Edyn) of the arteries in the axial and longitudinal directions. The system was comprised of a high resolution modified x-ray image intensifier (XRII) based computed tomographic system and a computer-controlled cardiac flow simulator. A standard NTSC CCD camera with a macro lens was coupled to the electro-optically zoomed XRII to acquire dynamic volumetric images. Through prospective cardiac gating and computer synchronized control, a time-resolved sequence of 20 mm thick high resolution volume images of porcine aortic specimens during one simulated cardiac cycle were obtained. Performance evaluation of the scanners illustrated that tomographic images can be obtained with resolution as high as 3.2 mm-1 with only a 9% decrease in the resolution for objects moving at velocities of 1 cm/s in 2D mode and static spatial resolution of 3.55 mm-1 with only a 14% decrease in the resolution in 3D mode for objects moving at a velocity of 10 cm/s. Application of the system for imaging of intact excised arterial specimens under simulated physiological flow/pressure conditions enabled measurements of the Edyn of the arteries with a precision of +/- kPa for the 3D scanner. Evaluation of the Edyn in the axial and longitudinal direction produced values of 428 +/- 35 kPa and 728 +/- 71 kPa, demonstrating the isotropic and homogeneous viscoelastic nature of the vascular specimens. These values obtained from the Dynamic CT systems were not statistically different (p less than 0.05) from the values obtained by standard uniaxial tensile testing and volumetric measurements.

Paper Details

Date Published: 25 April 2000
PDF: 12 pages
Proc. SPIE 3977, Medical Imaging 2000: Physics of Medical Imaging, (25 April 2000); doi: 10.1117/12.384510
Show Author Affiliations
Mark K. Lee, John P. Robarts Research Institute and Univ. of Western Ontario (Canada)
David W. Holdsworth, John P. Robarts Research Institute and Univ. of Western Ontario (Canada)
Aaron Fenster, John P. Robarts Research Institute and Univ. of Western Ontario (Canada)


Published in SPIE Proceedings Vol. 3977:
Medical Imaging 2000: Physics of Medical Imaging
James T. Dobbins; John M. Boone, Editor(s)

© SPIE. Terms of Use
Back to Top