Share Email Print

Proceedings Paper

Microjet printing of micro-optical interconnects and sensors
Author(s): Weldon Royall Cox; Chi Guan; Donald J. Hayes
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The microjet printing method is being used to fabricate microlens arrays for use in massively parallel, VCSEL-based datacom switches and to deposit lenslets of various configurations onto the tips of single-mode telecom fibers. Applications in the latter case include collimation of the output beams for free space optical interconnection and increasing the fiber numerical aperture for collection of light from edge-emitting diode lasers. Additional applications of this technology include point of arrays of active sensor elements onto the tips of imaging fiber bundles and fabrication of microlenses with axial index of refraction gradients to reduce focal spot size, utilizing multiple print heads with differing fluids. This low-cost, data-driven process, based on 'drop-on-demand' inkjet technology, involves the dispensing the placing of precisely sized microdroplets of optical material onto optical substrates. The micro-optical elements are printed with 100 percent solid, UV-curing optical epoxies, utilizing printing devices that can dispense picoliter-volume droplets at temperatures up to 300 degrees C.

Paper Details

Date Published: 27 April 2000
PDF: 8 pages
Proc. SPIE 3952, Optoelectronic Interconnects VII; Photonics Packaging and Integration II, (27 April 2000); doi: 10.1117/12.384425
Show Author Affiliations
Weldon Royall Cox, MicroFab Technologies, Inc. (United States)
Chi Guan, MicroFab Technologies, Inc. (United States)
Donald J. Hayes, MicroFab Technologies, Inc. (United States)

Published in SPIE Proceedings Vol. 3952:
Optoelectronic Interconnects VII; Photonics Packaging and Integration II
Michael R. Feldman; Richard Liqiang Li; Michael R. Feldman; Richard Liqiang Li; W. Brian Matkin; Suning Tang, Editor(s)

© SPIE. Terms of Use
Back to Top