Share Email Print

Proceedings Paper

Analysis of the 3D spatial organization of cells and subcellular structures in tissue
Author(s): David W. Knowles; Carlos Ortiz de Solorzano; Arthur Jones; Stephen J. Lockett
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Advancements in image analysis shave recently made it possible to segment the cells and nuclei, of a wide variety of tissues, from 3D images collected using fluorescence confocal microscopy. This has made it possible to analyze the spatial organization of individual cells and nuclei within the natural tissue context. We present here a spatial statistical method which examines an arbitrary 3D distribution of cells of two different types and determines the probability that the cells are randomly mixed, cells of one type are clustered, or cells of different types are preferentially associated. Beginning with a segmented 3D image of cells, the Voronoi diagram is calculated to indicate the nearest neighbor relationships of the cells. Then, in a test image of the same topology, cells are randomly assigned a type in the same proportions as in the actual specimen and the ratio of cells with nearest neighbors of the same type versus the other types is calculated. Repetition of this random assignment is used to generate a distribution function which is specific for the tissue image. Comparison of the ratios for the actual sample to this distribution assigns probabilities for the conditions defined above. The technique is being used to analyze the organization of genetically normal versus abnormal cells in cancer tissue.

Paper Details

Date Published: 27 April 2000
PDF: 8 pages
Proc. SPIE 3921, Optical Diagnostics of Living Cells III, (27 April 2000); doi: 10.1117/12.384235
Show Author Affiliations
David W. Knowles, Lawrence Berkeley National Lab. (United States)
Carlos Ortiz de Solorzano, Lawrence Berkeley National Lab. (United States)
Arthur Jones, Lawrence Berkeley National Lab. (United States)
Stephen J. Lockett, Lawrence Berkeley National Lab. (United States)

Published in SPIE Proceedings Vol. 3921:
Optical Diagnostics of Living Cells III
Daniel L. Farkas; Daniel L. Farkas; Robert C. Leif, Editor(s)

© SPIE. Terms of Use
Back to Top