Share Email Print

Proceedings Paper

High-resolution radar mapping of internal layers at NGRIP
Author(s): S. Prasad Gogineni; P. Kanagaratnam; Neils Gundestrup; Lars Larsen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A major goal of NASA's Office of Earth Science Polar Program is to determine the mass balance of the Greenland and Antarctic ice sheets. A key variable in assessing the mass balance of an ice sheet is accumulation rate. Currently, accumulation rate is determined from ice cores and pits. There are large uncertainties in existing accumulation rate maps derived from sparely distributed ice cores and pits. There is an urgent need for developing remote sensing techniques for determining the accumulation rate. A prototype Frequency Modulated Continuous Wave (FMCW) radar system has been developed for mapping internal layers from known volcanic events in the ice. The prototype system has been designed and developed using the latest RF technologies. The system was operated from 100 to 2000 MHz, for imaging the top 200 meters of ice with high resolution. We tested this system during the 1998 and 1999 surface experiments at the North GReenland Ice core Project (NGRIP) ice camp. Our results show that internal layers were successfully mapped with high resolution down to 200 m.

Paper Details

Date Published: 27 April 2000
PDF: 5 pages
Proc. SPIE 4084, Eighth International Conference on Ground Penetrating Radar, (27 April 2000); doi: 10.1117/12.383564
Show Author Affiliations
S. Prasad Gogineni, Univ. of Kansas (United States)
P. Kanagaratnam, Univ. of Kansas (United States)
Neils Gundestrup, Univ. of Copenhagen (Denmark)
Lars Larsen, Univ. of Copenhagen (Denmark)

Published in SPIE Proceedings Vol. 4084:
Eighth International Conference on Ground Penetrating Radar
David A. Noon; Glen F. Stickley; Dennis Longstaff, Editor(s)

© SPIE. Terms of Use
Back to Top