Share Email Print

Proceedings Paper

Quantitative analysis and parametric display of regional myocardial mechanics
Author(s): Christian D. Eusemann; Matthias E. Bellemann; Richard A. Robb
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Quantitative assessment of regional heart motion has significant potential for more accurate diagnosis of heart disease and/or cardiac irregularities. Local heart motion may be studied from medical imaging sequences. Using functional parametric mapping, regional myocardial motion during a cardiac cycle can be color mapped onto a deformable heart model to obtain better understanding of the structure- to-function relationships in the myocardium, including regional patterns of akinesis or diskinesis associated with ischemia or infarction. In this study, 3D reconstructions were obtained from the Dynamic Spatial Reconstructor at 15 time points throughout one cardiac cycle of pre-infarct and post-infarct hearts. Deformable models were created from the 3D images for each time point of the cardiac cycles. Form these polygonal models, regional excursions and velocities of each vertex representing a unit of myocardium were calculated for successive time-intervals. The calculated results were visualized through model animations and/or specially formatted static images. The time point of regional maximum velocity and excursion of myocardium through the cardiac cycle was displayed using color mapping. The absolute value of regional maximum velocity and maximum excursion were displayed in a similar manner. Using animations, the local myocardial velocity changes were visualized as color changes on the cardiac surface during the cardiac cycle. Moreover, the magnitude and direction of motion for individual segments of myocardium could be displayed. Comparison of these dynamic parametric displays suggest that the ability to encode quantitative functional information on dynamic cardiac anatomy enhances the diagnostic value of 4D images of the heart. Myocardial mechanics quantified this way adds a new dimension to the analysis of cardiac functional disease, including regional patterns of akinesis and diskinesis associated with ischemia and infarction. Similarly, disturbances in regional contractility and filling may be detected and evaluated using such measurements and displays.

Paper Details

Date Published: 18 April 2000
PDF: 9 pages
Proc. SPIE 3976, Medical Imaging 2000: Image Display and Visualization, (18 April 2000); doi: 10.1117/12.383075
Show Author Affiliations
Christian D. Eusemann, Mayo Clinic and Foundation (United States)
Fachhochschule Jena (Germany)
Matthias E. Bellemann, Fachhochschule Jena (Germany)
Richard A. Robb, Mayo Clinic and Foundation (United States)

Published in SPIE Proceedings Vol. 3976:
Medical Imaging 2000: Image Display and Visualization
Seong Ki Mun, Editor(s)

© SPIE. Terms of Use
Back to Top