Share Email Print

Proceedings Paper

Database for temporal events and spatial object features in time-lapse images
Author(s): Charles E. Eggers; Mohan M. Trivedi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present an image database system with the capability to locate specified object-level merge and separation events in a sequence of time-lapse images. Specifically, the objects of interest are live cells in phase contrast images acquired by scanning cytometry. The system is named TERSIS and it resides on a workstation accessing time lapse images on CD- ROM. The cell objects are segmented and the resulting data are processed to extract a time series and its time derivative series for each spatial feature. Cell objects are tracked through the image sequence by applying similarity metrics to the cell object feature vectors, and cell merge and separation events are located using global image statistics. Multiple hypotheses are generated and scored to determine participating cell objects in merge/separation events. The cell association and time-varying spatial data re stored in a database. A graphical suer interface provides the user with tools to specify queries for specific cellular states and events for recall and display. Primary limitation include the need for an automatic front-end segmenter and increased cell tracking volume. The design of this system is extensible to other object types and forms of sequential image input, including video.

Paper Details

Date Published: 18 April 2000
PDF: 11 pages
Proc. SPIE 3976, Medical Imaging 2000: Image Display and Visualization, (18 April 2000); doi: 10.1117/12.383041
Show Author Affiliations
Charles E. Eggers, Univ. of California/San Diego (United States)
Mohan M. Trivedi, Univ. of California/San Diego (United States)

Published in SPIE Proceedings Vol. 3976:
Medical Imaging 2000: Image Display and Visualization
Seong Ki Mun, Editor(s)

© SPIE. Terms of Use
Back to Top