Share Email Print
cover

Proceedings Paper

Patterned submicrometer-thick optical polarizing films using stretched silver island multilayers
Author(s): Kazutaka Baba; Yoshinori Sato; Tsutomu Yoshitake; Mitsunobu Miyagi
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We demonstrate a patterned submicrometer-thick optical polarizing film in which non-polarizing areas are formed where the light transmits insensitively to polarization. The polarizing film is fabricated by stretching a silver island multilayer consisting of thin glass layers and silver island layers composed of silver nanoclusters of high density. By stretching the silver island multilayer at a temperature higher than the glass annealing point, the silver islands are elongated along the stretching direction and the large optical anisotropy is induced in the silver island multilayer. In this optical polarizing film, the non- polarizing areas can be easily formed by laser irradiation with high power density as the optical anisotorpy is reduce das the elongated silver islands become spherical ones from the thermal deformation in the irradiated area. We have successfully patterned the optical polarizing films fabricated for the wavelength of 800 nm by laser writing with a 1 W-class carbon dioxide laser. In order to confirm that the optical anisotropy is reduced in the laser written are, the optical characteristics of that area have been measured. In most commercially available optical polarizers including a polarization beam splitter and various polarizing prisms, it is difficult to form the transparent non-polarizing areas. Therefore, the demonstrated patterned optical polarizing films are useful for switchable spatial modulators and filters.

Paper Details

Date Published: 17 April 2000
PDF: 8 pages
Proc. SPIE 3937, Micro- and Nano-photonic Materials and Devices, (17 April 2000); doi: 10.1117/12.382806
Show Author Affiliations
Kazutaka Baba, Tohoku Univ. (Japan)
Yoshinori Sato, Tohoku Univ. (Japan)
Tsutomu Yoshitake, Tohoku Univ. (Japan)
Mitsunobu Miyagi, Tohoku Univ. (Japan)


Published in SPIE Proceedings Vol. 3937:
Micro- and Nano-photonic Materials and Devices
Joseph W. Perry; Axel Scherer, Editor(s)

© SPIE. Terms of Use
Back to Top