Share Email Print
cover

Proceedings Paper

Higher order adaptive filter characterization of microwave fiber optic link nonlinearity
Author(s): Xavier N. Fernando; Abu B. Sesay
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Microwave Fiber Optic (MFO) links have attracted much attention recently with their application in wireless access. When a wireless link is in series with the optical link, nonlinear distortion (NLD) of the MFO link becomes the biggest concern. The linearity requirement is high due to the large variations in the RF power through the link. Laser intrinsic nonlinearity is usually the major concern in a directly modulated link. However, in wireless applications significant amplification is required at the antenna site, which introduces additional NLD. In this paper a higher order adaptive fiber is proposed to model the entire MFO link considering all cascaded nonlinearities. The FIR filter runs at the baseband symbol rate and trains itself from the input/output amplitude and phase relationships of the microwave modulated symbols. Thus no accurate knowledge of the link physical parameters is required. The powerful recursive least square algorithm converges quickly, tracking any modification or drift in the link parameters. Simulation results show that, third order Volterra adaptive filters are adequate to model measured AM-AM and AM-PM characteristics of a MFL link under steady state conditions. The link consists of a directly modulated InGaAsP DFB laser and PIN diode receiver with a high gain amplifier.

Paper Details

Date Published: 14 April 2000
PDF: 11 pages
Proc. SPIE 3927, Optical Pulse and Beam Propagation II, (14 April 2000); doi: 10.1117/12.382081
Show Author Affiliations
Xavier N. Fernando, TRLabs (Canada)
Abu B. Sesay, TRLabs (Canada)


Published in SPIE Proceedings Vol. 3927:
Optical Pulse and Beam Propagation II
Yehuda B. Band, Editor(s)

© SPIE. Terms of Use
Back to Top