Share Email Print
cover

Proceedings Paper

Knowledge acquisition: neural network learning
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

As the amount of information in the world is steadily increasing, there is a growing demand for tools for analyzing the information. Many scholars have been working hard to study machine learning in order to obtain knowledge from domain data sets. They hope to find patterns in terms of implicit dependencies in data. Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Some scholars have done much work to interpret neural networks so that they will no longer be seen as black boxes and provided some plots and methods for knowledge acquisition using neural networks. These can be classified into three categories: fuzzy neural networks, CF (certainty factor) based neural networks, and logical neurons. We review some of these research works in this paper.

Paper Details

Date Published: 6 April 2000
PDF: 12 pages
Proc. SPIE 4057, Data Mining and Knowledge Discovery: Theory, Tools, and Technology II, (6 April 2000); doi: 10.1117/12.381724
Show Author Affiliations
Guoyin Wang, Chongqing Univ. of Posts and Telecommunications (China)
Paul S. Fisher, Univ. of North Texas (United States)


Published in SPIE Proceedings Vol. 4057:
Data Mining and Knowledge Discovery: Theory, Tools, and Technology II
Belur V. Dasarathy, Editor(s)

© SPIE. Terms of Use
Back to Top