Share Email Print
cover

Proceedings Paper

Intersubband transition in AlGaN-GaN quantum wells for ultrafast all-optical switching at communication wavelength
Author(s): Nobuo Suzuki; Norio Iizuka; Kei Kaneko
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The intersubband transition (ISBT) in nitride quantum wells (QWs) is considered to be an excellent device mechanism for ultrafast optical switches capable of 1 Tb/s operation at room temperature. The 1.55-micrometers ISBT is feasible because of a large (approximately 2 eV) conduction band discontinuity in AlGaN/GaN QWs. The intersubband relaxation time in AlGaN/GaN QWs was calculated to be about 100 fs, which is 25 times shorter than that in AlAs/(In)GaAs QWs. The fast relaxation in nitride semiconductors is due to the strong interaction between electrons and LO-phonons. Intersubband absorption in the wavelength range of 3 - 7 micrometers was observed in MOCVD-grown AlGaN/GaN QWs, and the ultrafast response of the ISBT in nitrides was experimentally verified. The ISBT wavelength in the nitride QWs, however, was found to be affected by a strong built-in field (approximately MV/cm) caused by the spontaneous polarization and piezoelectric effect. A design to realize the ISBT at the communication wavelength in AlGaN/GaN QWs with a strong built-in field is discussed. Next, we report on an ultrashort pulse propagation model for nonlinear optical waveguides utilizing the intersubband absorption in AlGaN/GaN QWs. The finite-difference time-domain approach in conjunction with the rate equations describing the ISBT was adopted. Ultrafast optical gate operation in the waveguide was simulated.

Paper Details

Date Published: 28 March 2000
PDF: 12 pages
Proc. SPIE 3940, Ultrafast Phenomena in Semiconductors IV, (28 March 2000); doi: 10.1117/12.381452
Show Author Affiliations
Nobuo Suzuki, Toshiba Corp. (Japan)
Norio Iizuka, Toshiba Corp. (Japan)
Kei Kaneko, Toshiba Corp. (Japan)


Published in SPIE Proceedings Vol. 3940:
Ultrafast Phenomena in Semiconductors IV
Kong-Thon F. Tsen; Jin-Joo Song, Editor(s)

© SPIE. Terms of Use
Back to Top