Share Email Print
cover

Proceedings Paper

Novel high-power red laser diode transverse structure
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In the already classical separate confinement (SCH) quantum well (QW) semiconductor laser diode structures many of the desired performances are contradictory coupled through the structural parameters -- i.e. a structural parameter modification leading to the improvement of one or more laser performances will produce the deterioration of at least another performance. Based on an analysis of this contradictory coupling a novel transverse layer structure that alleviates the problem and enables improved laser diode performances is proposed. Both optical simulation and a fully self-consistent model are used in a design optimization methodology and simple evaluation and optimization criteria for the new transverse structure are derived. A number of the analyzed high-power edge-emitting GazIn1-zP/(AlxGa1- x)yIn1-yP/GaAs quantum well laser structures were prepared using all-solid-source molecular beam epitaxy (SS-MBE) for layer growth and remarkable performances were obtained (continuous wave output powers of 3 W at 670 nm, 2 W at 650 nm, and 1 W at 630 nm; threshold current densities of 350 - 450 Angstrom/cm2 for 670 nm, 500 - 540 A/cm2 for 650 nm, and 600 - 680 A/cm2 for 630 nm). Although only a few of the optimization features were implemented the good agreement between measurements and simulations for the prepared structures indicate that significant performance improvements -- predicted by the simulations -- are still possible.

Paper Details

Date Published: 3 April 2000
PDF: 11 pages
Proc. SPIE 3889, Advanced High-Power Lasers, (3 April 2000); doi: 10.1117/12.380901
Show Author Affiliations
Mihail M. Dumitrescu, Tampere Univ. of Technology (Finland)
Seppo Orsila, Tampere Univ. of Technology (Finland)
Pekka Savolainen, Tampere Univ. of Technology (Finland)
Mika Toivonen, Tampere Univ. of Technology (Finland)
Markus Pessa, Tampere Univ. of Technology (Finland)


Published in SPIE Proceedings Vol. 3889:
Advanced High-Power Lasers
Marek Osinski; Howard T. Powell; Koichi Toyoda, Editor(s)

© SPIE. Terms of Use
Back to Top