Share Email Print
cover

Proceedings Paper

LD-pumped slab Yb:YAG laser
Author(s): Masao Sato; Nobuaki Iehisa; Norio Karube
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In recent years, the high power Yb:YAG lasers have been actively investigated due to the advantage of the high quantum efficiency of 91% which reduces the thermal loading in the Yb:YAG crystal. So far, the Yb:YAG laser with the output power higher than several hundreds watts has been developed using the crystal configurations of rod and thin disk. We have developed the Yb:YAG laser by employing the rectangular slab crystal in order to examine the possibility of realizing the high power slab Yb:YAG laser. The dimension of the Yb:YAG crystal used is 1 mm X 5 mm X 10 mm and its configuration is a rectangular parallelepiped, and the density of Yb is 1.1 atom%. The LD (Laser Diode) pump light focused with plano-convex lens is introduced through the 1 mm X 10 mm plane of this slab which is AR-coated at 940 nm while the opposite 1 mm X 10 mm plane is HR-coated at the same wavelength. The Yb:YAG laser cavity axis is in the direction perpendicular to the 1 mm X 5 mm planes which are AR-coated at 1030 nm. The two 5 mm X 10 mm planes are cooled by being contacted with the copper heat sinks which are cooled by the water at the temperature of 18 degrees Celsius. The CW output of 35 W was obtained when the power of LD pump light was 496 W. The optical efficiency was 7.1% with the optical slop efficiency of 12.2%.

Paper Details

Date Published: 3 April 2000
PDF: 8 pages
Proc. SPIE 3889, Advanced High-Power Lasers, (3 April 2000); doi: 10.1117/12.380886
Show Author Affiliations
Masao Sato, FANUC, Ltd. (Japan)
Nobuaki Iehisa, FANUC, Ltd. (Japan)
Norio Karube, FANUC, Ltd. (Japan)


Published in SPIE Proceedings Vol. 3889:
Advanced High-Power Lasers
Marek Osinski; Howard T. Powell; Koichi Toyoda, Editor(s)

© SPIE. Terms of Use
Back to Top