Share Email Print

Proceedings Paper

Magnetic field effect on laser isotope separation of gadolinium and zirconium
Author(s): Hideaki Niki; Iwao Kitazima
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In laser isotope separation based on polarization selection rules the effect of magnetic field on isotopic selectivity was investigated. Excitation dynamics of atoms by linearly polarized lasers were numerically analyzed for J equals 2 yields 2 yields 1 yields 0 stepwise excitation under a magnetic field. Time evolution of the population in each magnetic substrate was calculated by solving the rate equations under the condition in which the atomic alignment is gradually destroyed by precession motion of the angular momentum around a magnetic field. It was found that a relatively small magnetic field may cause a selectivity loss and the field strength component perpendicular to laser polarization direction should be kept as small as the terrestrial magnetic field to obtain a high selectivity in the case of gadolinium isotope separation.

Paper Details

Date Published: 11 January 2000
PDF: 8 pages
Proc. SPIE 3886, High-Power Lasers in Energy Engineering, (11 January 2000); doi: 10.1117/12.375112
Show Author Affiliations
Hideaki Niki, Fukui Univ. (Japan)
Iwao Kitazima, Fukui Univ. (Japan)

Published in SPIE Proceedings Vol. 3886:
High-Power Lasers in Energy Engineering
Kunioki Mima; Gerald L. Kulcinski; William J. Hogan, Editor(s)

© SPIE. Terms of Use
Back to Top