Share Email Print
cover

Proceedings Paper

Feature localization and search by object model under illumination change
Author(s): Mark S. Drew; Zinovi Tauber; Ze-Nian Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Color objects recognition methods that are based on image retrieval algorithms can handle changes of illumination via image normalization, e.g. simple color-channel-normalization or by forming a doubly-stochastic image matrix. However these methods fail if the object sought is surrounded by clutter. Rather than directly trying to find the target, a viable approach is to grow a small number of feature regions called locales. These are defined as a non-disjoint coarse localization based on image tiles. In this paper, locales are grown based on chromaticity, which is more insensitive to illumination change than is color. Using a diagonal model of illumination changes, a least-squares optimization on chromaticity recovers the best set of diagonal coefficients for candidate assignments from model to test locales sorted in a database. If locale centroids are also sorted then, adapting a displacement model to include model locale weights, transformed pose and scale can be recovered. Tests on databases of real images show promising results for objects query.

Paper Details

Date Published: 23 December 1999
PDF: 12 pages
Proc. SPIE 3972, Storage and Retrieval for Media Databases 2000, (23 December 1999); doi: 10.1117/12.373572
Show Author Affiliations
Mark S. Drew, Simon Fraser Univ. (Canada)
Zinovi Tauber, Simon Fraser Univ. (Canada)
Ze-Nian Li, Simon Fraser Univ. (Canada)


Published in SPIE Proceedings Vol. 3972:
Storage and Retrieval for Media Databases 2000
Minerva M. Yeung; Boon-Lock Yeo; Charles A. Bouman, Editor(s)

© SPIE. Terms of Use
Back to Top