Share Email Print
cover

Proceedings Paper

Space-resolved measurement of transport processes at liquid-liquid interfaces using laser-induced fluorescence
Author(s): Klaus Joeris; Thomas-Helmut Scheper
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Modeling of liquid-liquid-extraction processes involves the concentration of the extracted component directly at the interface. Currently, only very few and specialized methods are available for the direct measurement of these concentrations. Therefore a new, fluorescence based measurement system with a high spatial resolution and a broad application spectrum was developed and tested. The detection principle is based on the use of fluorescent dyes, excited by an argon ion laser. The intensity of the emitted light is dependent on the concentration of the extracted component in the very near surroundings of the dye. This intensity distribution is reproduced by an optical, microscope based system onto a highly sensitive camera with a spatial resolution of 1 micrometer. This distribution is converted into a concentration profile at the interface using a calibration function and digital image processing routines. Measurements were performed in a commonly used stirred two phase reactor modified to meet the requirements of an optical measurement system. It could be shown that the concentration profiles at mobile and immobile interfaces can be visualized with a resolution of 1 micrometer. The profiles formed at the interface differ significantly according to the kinetic of the used extraction system and the flow profiles in the reactor and can be used for further modeling of the extraction processes.

Paper Details

Date Published: 21 December 1999
PDF: 10 pages
Proc. SPIE 3853, Environmental Monitoring and Remediation Technologies II, (21 December 1999); doi: 10.1117/12.372871
Show Author Affiliations
Klaus Joeris, Univ. Hannover (Germany)
Thomas-Helmut Scheper, Univ. Hannover (Germany)


Published in SPIE Proceedings Vol. 3853:
Environmental Monitoring and Remediation Technologies II
Tuan Vo-Dinh; Robert L. Spellicy, Editor(s)

© SPIE. Terms of Use
Back to Top