Share Email Print
cover

Proceedings Paper

Modeling the response features of optical sensors for oxygen: an overview
Author(s): Andrew Mills
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The response features of optical oxygen sensors based on luminescence quenching are complex and typically include downward curving Stern-Volmer plots and multi-exponential luminescence decays in the absence and presence of oxygen. The principle features and failings of some of the established models used to describe these response features are considered. A new model is introduced: 'a log-Gaussian distribution in (tau) 0 and kq,i ' model, or 'log- Gaussian' model for short. The key basic equations of this model are given and appear able to simulate the diverse response characteristics of many optical oxygen sensor. The model is used to fit the observed Stern Volmer plots and luminescence decays for two real sensors. The model appears to provide a reasonable physical basis for the very diverse response characteristics observed for optical oxygen sensors.

Paper Details

Date Published: 23 November 1999
PDF: 11 pages
Proc. SPIE 3856, Internal Standardization and Calibration Architectures for Chemical Sensors, (23 November 1999); doi: 10.1117/12.371296
Show Author Affiliations
Andrew Mills, Univ. of Strathclyde (United Kingdom)


Published in SPIE Proceedings Vol. 3856:
Internal Standardization and Calibration Architectures for Chemical Sensors
Ronald E. Shaffer; Radislav A. Potyrailo, Editor(s)

© SPIE. Terms of Use
Back to Top