Share Email Print

Proceedings Paper

Global modeling of ultrafast photomixer circuits for millimeter-wave generation
Author(s): David B. Ameen; Gregory B. Tait
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The role of integrated device/circuit simulation is critical to understanding the gigahertz-photonic operation of photomixing circuits containing metal-semiconductor-metal (MSM) devices. This work presents an efficient convolution- based time-domain approach to circuit simulation that incorporates an advanced numerical MSM device model. Complete millimeter-wave circuit simulation requires consideration of both the dynamic, high-frequency behavior of the electron and hole charge carriers in the large-signal device, and the frequency-dependent, distributed nature of the embedding circuit. The modeled device is an MBE-grown GaAs MSM photodetector with trench electrodes. Device and circuit performance is assessed by calculating the optical responsivity and bandwidth. Simulations with the device alone demonstrate the effects of a new current density boundary condition, as well as the effects of using low- growth- versus conventional-growth-temperature GaAs MSM's. Global simulations illustrate the effect that the embedding circuit has on bandwidth. Both types of simulations aid in the co-design of device and circuit, with applications to millimeter-wave generation in phased-array antennas and optoelectronic-based communication systems.16

Paper Details

Date Published: 12 November 1999
PDF: 12 pages
Proc. SPIE 3795, Terahertz and Gigahertz Photonics, (12 November 1999); doi: 10.1117/12.370185
Show Author Affiliations
David B. Ameen, Virginia Commonwealth Univ. (United States)
Gregory B. Tait, Virginia Commonwealth Univ. (United States)

Published in SPIE Proceedings Vol. 3795:
Terahertz and Gigahertz Photonics
R. Jennifer Hwu; Ke Wu, Editor(s)

© SPIE. Terms of Use
Back to Top